MECHANICS (C) UNIT 2 TEST PAPER 7

Take $g=9.8 \mathrm{~ms}^{-2}$ and give all answers correct to 3 significant figures where necessary.

1. A particle of mass 0.6 kg moves in a horizontal circle with constant angular speed 1.5 radians per second. If the force directed towards the centre of the circle has magnitude 0.27 N , find the radius of the circular path.
2.

A key is modelled as a lamina which consists of a circle of radius 3 cm , with a circle of radius 1 cm removed from its centre, attached to a rectangle of length 8 cm and width 1 cm , with a rectangle measuring 3 cm by 1 cm fixed to its end as shown.
Calculate the distance of the centre of mass of the key from the line marked $A B$.
3. A van of mass 1600 kg is moving with constant speed down a straight road inclined at 7^{0} to the horizontal. The non-gravitational resistance to the van's motion has a constant magnitude of 2000 N and the engine of the van is working at a rate of 1.5 kW . Find
(i) the constant speed of the van,
(ii) the acceleration of the van if the resistance is suddenly reduced to 1900 N .
4. A body of mass 1 kg moves in a plane under the action of a constant force of magnitude ž41 N. The body moves from the point P with coordinates $(-3,-15)$ to the point Q with position vector $(9,0)$, the unit of distance on each axis being 1 metre.
(i) Find the work done by the force in moving the body from P to Q.
(ii) Given that the body started from rest at P, find its speed when it is at Q.
5. Two railway trucks A and B, whose masses are $6 m$ and $5 m$ respectively, are moving in the same direction along a straight track with speeds $5 u$ and $3 u$ respectively, and collide directly. Immediately after this impact, the speeds of A and B are v and $k v$ respectively, in the same direction as before. The coefficient of restitution between A and B is e.
Modelling the trucks as particles,
(i) show that
(a) $v=\frac{45 \mathrm{u}}{5 \mathrm{k}+6} \quad$,
(b) $v=\frac{2 \mathrm{eu}}{\mathrm{k}-1}$
(ii) Use the fact that $0<e<1$ to deduce the range of possible values of k.
6. A piece of lead and a table tennis ball are dropped together from a point P near the top of the Leaning Tower of Pisa. The lead hits the ground after $3 \cdot 3$ seconds.
(i) Calculate the height above ground from which the lead was dropped.

According to a simple model, the ball hits the ground at the same time as the lead.
(ii) State why this may not be true in practice and describe a refinement to the model which could lead to a more realistic solution.
The piece of lead is now thrown again from P, with speed $7 \mathrm{~ms}^{-1}$ at an angle of 30° to the horizontal.
(iii) Find expressions in terms of t for x and y, the horizontal and vertical displacements respectively of the piece of lead from P at time t seconds after it is thrown.
(iv) Deduce that $y=\frac{\sqrt{3} \mathrm{x}}{3}-\frac{2 \mathrm{x}^{2}}{15}$
(v) Find the speed of the piece of lead when it has travelled 10 m horizontally from P.
7.

A uniform ladder $A B$, of mass $m \mathrm{~kg}$ and length $2 a \mathrm{~m}$, rests with its upper end A in contact with a smooth vertical wall and its lower end B in contact with a fixed peg on horizontal ground. The ladder makes an angle α with the ground, where $\tan \alpha=3 / 4$.
(i) Show that the magnitude of the resultant force acting on the ladder at B is $\frac{\sqrt{13}}{3} \mathrm{mg}$.
(ii) Find, to the nearest degree, the direction of this resultant force at B.

The peg will break when the horizontal force acting on it exceeds $2 m g \mathrm{~N}$.
A painter of mass $6 m \mathrm{~kg}$ starts to climb the ladder from B.
(iii) Find, in terms of a, the greatest distance up the ladder that the painter can safely climb. [6]

MECHANICS 2 (C) TEST PAPER 7 : ANSWERS AND MARK SCHEME

1. $0.27=m r \omega^{2}=0.6 r(1.52) \quad r=0.2 \mathrm{~m}$
2. $8 \pi(3)+8(10)+3(13 \cdot 5)=(11+8 \pi) \overline{\mathrm{x}}$ $\overline{\mathrm{x}}=(24 \pi+120 \cdot 5) \div(8 \pi+11)=5 \cdot 42 \mathrm{~cm}$

M1 A1
M1 A1 A1 5
3. (i) Net resisting force $=2000-1600 g \sin 7^{0}=89 \cdot 1 \mathrm{~N}$
$1500=89 \cdot 1 v \quad v=16 \cdot 8 \mathrm{~ms}^{-1}$
M1 A1
M1 A1
(ii) Now accelerating force $=100 \mathrm{~N}=1600 a \quad a=0.0625 \mathrm{~ms}^{-2}$

M1 A1 6
4. (i) Displacement $=\sqrt{ }\left(12^{2}+15^{2}\right)=3 \sqrt{ } 41$ $F=$ ž 41 , so work done $=3 \sqrt{41} \times \sqrt{ } 41=123 \mathrm{~J}$
(ii) Work $=$ change in K.E., so $\frac{1}{2} v^{2}=123 \quad v=\sqrt{ } 246=15.7 \mathrm{~ms}^{-1}$
5. (i) (a) Momentum : $30 m u+15 m u=6 m v+5 m k v$

M1 A1

$$
45 u=(6+5 k) v \quad v=\frac{45 \mathrm{u}}{5 \mathrm{k}+6}
$$

A1
(b) Elasticity: $(k v-v) /(3 u-5 u)=-e$

M1 A1
$(k-1) v=(-2 u)(-e) \quad v=\frac{2 \mathrm{eu}}{\mathrm{k}-1}$
M1 A1
(ii) $\frac{45 \mathrm{u}}{5 \mathrm{k}+6}=\frac{2 \mathrm{eu}}{\mathrm{k}-1} \quad e=\frac{45(\mathrm{k}-1)}{2(5 \mathrm{k}+6)}$
$0<e<1$, so $0<45 k-45<10 k+12 \quad k-1 \neq 0$, so $1<k<{ }^{57} / 35$
M1 A1
M1 A1
6. (i) $s=g t^{2}=\times 9.8 \times 3.32=53.4 \mathrm{~m}$
(ii) Ball, being lighter, may be affected by air resistance : include this
(iii) $x=\left(7 \cos 30^{\circ}\right) t=\frac{7 \sqrt{3}}{2} t \quad y=\left(7 \sin 30^{\circ}\right) t-\frac{1}{2} g t^{2}={ }^{7} / 2 t-4 \cdot 9 t^{2}$
(iv) $t=\frac{2 \mathrm{x}}{7 \sqrt{3}} \quad y=\frac{\mathrm{x}}{\sqrt{3}}-\frac{4.9(2 \mathrm{x})^{2}}{(7 \sqrt{3})^{2}}=\frac{\sqrt{3} \mathrm{x}}{3}-\frac{2 \mathrm{x}^{2}}{15}$

M1 A1
B1 B1
M1 A1 M1 A1

M1 A1
(v) When $x=10, y=-7 \cdot 56$

$$
\frac{1}{2} m(49)+7 \cdot 56 m g=\frac{1}{2} m v^{2}
$$

$$
v=14 \cdot 0 \mathrm{~ms}^{-1}
$$

B1
M1 A1 A1 14
7.
(i) $R=m g, F=S \quad \mathrm{M}(B): m g a \cos \alpha=2 a S \sin \alpha$ B1 M1 A1
$S=m g / 2 \tan \alpha=\frac{2 \mathrm{mg}}{3}=F$
A1
Resultant force at $\left.B=\sqrt{ }(m g)^{2}+\left(\frac{2 \mathrm{mg}}{3}\right)^{2}\right]=\frac{\sqrt{13} \mathrm{mg}}{3}$
M1 A1
(ii) Angle $=\tan ^{-1}(3 / 2)=56^{0}$ to horizontal

M1 A1
(iii) $\mathrm{M}(B): m g a \cos \alpha+6 m g x \cos \alpha=2 a S \sin \alpha$
M1 A1

$$
S=\frac{2 \mathrm{mg}(\mathrm{a}+6 \mathrm{x})}{3 \mathrm{a}} \quad \text { When } S=2 m g, a+6 x=3 a
$$

$$
6 x=2 a
$$

$$
x=\frac{1}{3} \mathrm{a}
$$

A1 14

